R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS) B.Tech. I Year I Semester Supplementary Examinations October/November-2025 ADVANCED PHYSICS

(Mechanical Engineering)

	≈_	(Wechanical Engineering)			
Time	: 3	Hours	Max. Ma	ırks:	60
V 7		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Describe the formation of Newton's ring with necessary theory.	CO1	L2	6M
(4		Explain how the wavelength of light sources is determined by forming	CO1	L2	6M
		Newton's ring.	001	LIE	UIVI
		OR			
2	a	Distinguish between Fresnel's and Fraunhofer diffraction.	CO1	L4	8M
	b	A plane grating having 10520 lines per cm is illuminated with ligh	t CO1	L4	4M
		having a wave length of 5 x 10-5 cm at normal incidence how many	.t CO1	1,2	4111
	2	orders are visible in the grating spectra?	γ. = =	77 ₅₅	
		UNIT-II			
3	a	Write Sabine's formula for reverberation time? Mention factors	. 1000	т.	07.5
	••	controlling the reverberation time?	3 CO2	L2	8M
	h	What are the basic requirements of acoustically good hall?	COA		د ماجه
		OR	CO2	L2	4M
4	a			W.	
7	а	Describe the application of Ultrasonic in non-destructive testing (NDT) of material.) CO2	L2	6M
	h	Give the important applications of ultrasonic waves.	COA	T A	110 63 e 3
	D		CO2	L2	6M
· _	_	Emplois P. H. and G.C.	4		
- 5		Explain B-H curve of ferromagnetic material.	. CO3	L2	8M
17	D	What are soft and hard magnetic materials.	CO ₃	L2	4M
		OR			
6	a	Discuss the frequency dependence of various polarization process in	CO3	L2	6 M
10		dielectric materials.			
	D	Derive Clausius – Mossotti equation.	CO ₃	L4	6M
		UNIT-IV			2
- 7	a	Explain the construction and working of Nd:YAG laser with suitable	CO4	L2	8M
		energy level diagram.			2 2 2
	b	What are the advantages of Nd:YAG laser.	CO4	L1	4M
		OR		W.	
8	a	Distinguish between single mode and multimode optical fibers.	CO ₄	L4	8M
	b	Write brief note on the structure of fiber cables.	CO ₄	L2	4M
		UNIT-V		a	
9	a	Discuss properties of nanomaterials.	CO5	L2	6M =
		Discuss the synthesis nanomaterial by Sol-Gel technique.	CO5	L2	6M
		OR			OLVE
10	a]	Define Condensation, Crystal growth and Nucleation.	CO5	L2	6M
	b 3	Discuss the biomedical applicatins of nanomaterials.	CO5	L2	
		*** END ***	000		OIVI

O.P.Code: 19ME0361

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 THERMAL & FLUID ENGINEERING

	THEAVIAL & FLUID ENGINEERING			
Тi	(Electrical & Electronics Engineering)	1//	7.5	
-	(Answer all Five Units $5 \times 12 = 60$ Marks)	wax	. wai	ks: 60
	UNIT-I			
1	Explain the various elements of hydroelectric power station with a neat	CO1	L2	12M
	sketch.			
	OR		. 5	
2	Explain the factor to be considered for selection of site for hydroelectric powerplant.	CO1	L2	12M
	UNIT-II			
3	a Differentiate between the cyclic process and non-cyclic process.	CO2	L2	6M
	b What do you understand by path function and point function? OR	CO2	L3	6M
4	a State and explain second law of thermodynamics.	CO ₂	L1	6M
	b Establish the equivalence of Kelvin-Planck and Clausius statements. UNIT-III	CO2	L3	6M -
5	A steam power plant is supplied with dry saturated steam at a pressure	CO3	L4	12M
35	of 12 bar and exhausts into a condenser at 0.1 bar, Calculate the Rankine	71		22112
22	efficiency by using steam tables, and Mollier chart.			
_	OR			
6	Draw the P-V and T-S diagrams of Rankine cycle and Carnot cycle. UNIT-IV	CO3	L1	12M
7	Explain the terms:	CO4	L2	12M
	(i) Path line (ii) Streak line (iii) Stream line, and (iv) Stream tube.			2
	OR			¥
8	a Explain how a U tube manometer is used to measure both positive and negative pressures.	CO4	L2	6M
	b A U tube manometer is used to measure the pressure of oil of specific	CO ₄	L3	6M
100	gravity 0.85 flowing in a pipe line. Its left end is connected to the pipe			
	and the right limb is open to the atmosphere. The centre of the pipe is 100 mm below the mercury in the right limb. If the difference of ercury			
, ;	level in the two limbs is 160 mm. Determine the absolute pressure of the		71	
	oil in the pipe.			
	UNIT-V	Č	, ,	
9	a What are minor losses? Under what circumstances they are negligible.	CO5	L1	6M
	b An orifice-meter with orifice diameter 15 cm is inserted in a pipe of 30	CO3	L3	6M
	cm diameter. The pressure gauges fitted upstream and downstream of			
	the orifice meter give readings of 14.715 N/cm ² and 9.81 N/cm ²		: S2:	9
	respectively. Find the rate of flow of water through the pipe in liters/s. Take $C = 0.6$.			
	Take $C = 0.6$.			
10	Explain the pipes in series and derive equation for total loss of head in	CO2	T 4	123/
	pipe.	CUS	L4	12M
	*** FMD ***			

O.P.Code: 19CE0101

R19

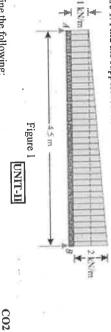
H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 **ENGINEERING MECHANICS**

(Common to CE, ME & AGE)

Time: 3 Hours


(Answer all Five Units $5 \times 12 = 60$ Marks) Max. Marks: 60

CO1 L2 L4 6M

The resultant of the two forces, when they act at an angle of 60° is 14 N. If the same forces are acting at right angles, their resultant is $\sqrt{137}$ N. Classify different system of forces with suitable examples.

Determine the magnitude of the two forces.

A simply supported beam AB of span 4.5 m is loaded as shown in Figure 1. Find the support reactions at A and B. C01 L4 12M

Define the following:

12M

a) Limiting Force of Friction

Kinetic Friction

Co-efficient of Friction

e) Angle of Repose Angle of Friction

L4

12M

A screw jack raises a load of 40 kN. The screw is square threaded having three threads per 20 mm length and 40 mm in diameter. Calculate the force required at the end of a lever 400mm long measured from the axis of the screw, if the coefficient of friction between screw and nut is 0.12. C02

L4

12M

through the centre of gravity of the section. the moment of inertia of the section about the horizontal axis passing An 1-section is made up of three rectangles as shown in Figure 2. Find C03

U

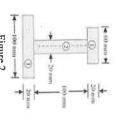


Figure 2 OR

> 6 Determine the centroid of the remaining portion of a circular sheet of metal of radius 50cm when a hole of 10cm radius is taken out from the centre of the circular disc along its horizontal diameter as shown in figure 3. CO3

> > L4

12M

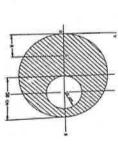
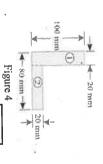
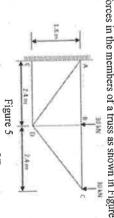



Figure 3 UNIT-IV


Prove the parallel axis theorem in the determination of moment of inertia of areas with the help of a neat sketch. C04 L3 12M

Find the moment of inertia about the centroidal X-X and Y-Y axes of CO4 the angle section shown in Figure 4. L4 12M

Find the forces in the members of a truss as shown in Figure 5. V-LIND

> C05 L4 12M

C05

L2

12M

10

a) What is a cantilever truss? How will you find out its reactions?b) State the assumptions made in the analysis of pin jointed trusses.

c) How method of joint differs from the method of section in the analysis of pin jointed trusses?

d) What is meant by perfect frame?e) What are the types of vibrations.

*** END ***

Page 1 of 2

O.P.Code: 19ME0302

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations October/November-2025 **ENGINEERING GRAPHICS**

(Common to ECE, CSE & CSIT)

Time: 3 Hours

Max. Marks: 60

12M

12M

12M

12M

12M

12M

12M

L4

L6

L3

L4

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Construct a hyperbola with the distance between the focus and directrix CO1 **L6** 12M as 50 mm and eccentricity as 3/2. Also, draw normal and tangent to the curve at a point 30 mm from the directrix.

OR

2 Construct a rectangular hyperbola when a point P is at distance of 18 **L6** mm and 34 mm from two asymptotes. Also draw a tangent to the curve at a point 20 from an asymptote.

UNIT-II

3 A line AB of 70 mm long, as its end A at 10 mm above H.P and 15 mm CO2 in front of V.P. Its front view and top view measures 50 mm and 60 mm. Draw the projections of the line and determine its inclination with H.P. and V.P

OR

A Thin $30^{\circ}-60^{\circ}$ set- square has its longest edge (diagonal) on H.P and **CO2** 4 inclined at 300 to V.P. Its surface makes an angle of 450 with H.P. Draw the projections, choosing suitable size for the set -square.

UNIT-III

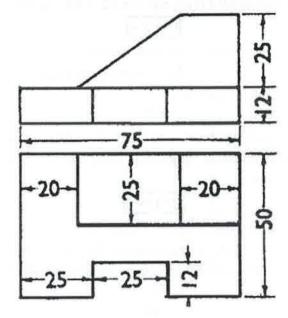
A hexagonal pyramid side of base 25 mm and axis 50 mm long rest with **CO3** 5 one of its edges of base on H.P and its axis is inclined at 300 to H.P and parallel to V.P. Draw the projections.

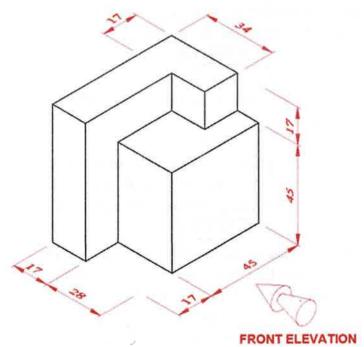
OR

A cone with base 60 mm diameter and axis 75 mm long, is resting on its **CO3** 6 base on H.P. It is cut by a section plane parallel to H.P and passing through the mid-point of the axis. Draw the projections of the cut solid.

UNIT-IV

A pentagonal pyramid of side of base 30 mm and 60 mm long, is resting **CO4** 7 on its base on H.P, with an edge of the base parallel to V.P. draw the development of the lateral surface of the pyramid.


A vertical square prism of base 30 mm side and 70 mm axis is CO4 8 penetrated by a horizontal square prism of base 25 mm side and 70mm axis. Both the axes intersects and bisects each other. All the faces of the prisms are equally inclined to V.P. Draw the projections showing the curves of intersection.


UNIT-V

Draw the isometric view of a hexagonal prism, with side of base 25 mm CO5 **12M** 9 and axis 60 mm long .The prism is resting on its base on H.P, with an edge of the base parallel to V.P. Use box method.

Draw the isometric view of the following sketch. 10

CO5 L4 12M

